Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
J Am Heart Assoc ; 11(11): e024931, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35658515

ABSTRACT

Background Idiopathic recurrent pericarditis (IRP) is an orphan disease that carries significant morbidity, partly driven by corticosteroid dependence. Innate immune modulators, colchicine and anti-interleukin-1 agents, pioneered in monogenic autoinflammatory diseases, have demonstrated remarkable efficacy in trials, suggesting that autoinflammation may contribute to IRP. This study characterizes the phenotype of patients with IRP and monogenic autoinflammatory diseases, and establishes whether autoinflammatory disease genes are associated with IRP. Methods and Results We retrospectively analyzed the medical records of patients with IRP (n=136) and monogenic autoinflammatory diseases (n=1910) attending a national center (London, UK) between 2000 and 2021. We examined 4 genes (MEFV, MVK, NLRP3, TNFRSF1A) by next-generation sequencing in 128 patients with IRP and compared the frequency of rare deleterious variants to controls obtained from the Genome Aggregation Database. In this cohort of patients with IRP, corticosteroid dependence was common (39/136, 28.7%) and was associated with chronic pain (adjusted odds ratio 2.8 [95% CI, 1.3-6.5], P=0.012). IRP frequently manifested with systemic inflammation (raised C-reactive protein [121/136, 89.0%] and extrapericardial effusions [68/136, 50.0%]). Pericarditis was observed in all examined monogenic autoinflammatory diseases (0.4%-3.7% of cases). Rare deleterious MEFV variants were more frequent in IRP than in ancestry-matched controls (allele frequency 9/200 versus 2932/129 200, P=0.040). Conclusions Pericarditis is a feature of interleukin-1 driven monogenic autoinflammatory diseases and IRP is associated with variants in MEFV, a gene involved in interleukin-1ß processing. We also found that corticosteroid dependence in IRP is associated with chronic noninflammatory pain. Together these data implicate autoinflammation in IRP and support reducing reliance on corticosteroids in its management.


Subject(s)
Hereditary Autoinflammatory Diseases , Pericarditis , Adrenal Cortex Hormones , Hereditary Autoinflammatory Diseases/diagnosis , Hereditary Autoinflammatory Diseases/drug therapy , Hereditary Autoinflammatory Diseases/genetics , Humans , Pericarditis/diagnosis , Pericarditis/drug therapy , Pericarditis/genetics , Pyrin/genetics , Referral and Consultation , Retrospective Studies
2.
Rheumatol Adv Pract ; 5(2): rkab043, 2021.
Article in English | MEDLINE | ID: mdl-34466775

ABSTRACT

OBJECTIVES: The systemic autoinflammatory diseases are rare conditions; to date, data on coronavirus disease 2019 (COVID-19) infection and vaccination safety are scarce. Agents targeting innate immune pathways have transformed the management of affected patients, and their outcomes are of wider interest given the role of inflammation in both viral clearance and severe COVID-19 disease. We surveyed patients with systemic autoinflammatory disease on biologic therapy to determine the prevalence and outcomes of COVID-19 infection and to gather early safety data on vaccination. METHODS: Electronic medical records of 248 patients with systemic autoinflammatory disease on biologic therapy at a national centre were reviewed. Patients were then surveyed in clinic or using a Web-based survey. RESULTS: In the cohort of 248 patients, no deaths were recorded. One hundred and seventy-five survey responses were received. Among the respondents, 27 reported suspected COVID-19 infection, of which 14 were confirmed by testing (8.0%). Two patients required hospital admission owing to dehydration. No patient required respiratory support or intensive care. One hundred and thirty-eight doses of COVID-19 vaccine had been administered to 130 patients. Side effects were reported after 71 of 138 (51.4%) administrations and were consistent with a flare of the underlying disease in 26 of 138 (18.8%) instances. No serious adverse events or hospital admissions were reported after vaccination. CONCLUSION: These data, including the largest published series of patients on anti-IL-1/6 biologics to receive any adenoviral vector or messenger RNA vaccine, show no serious early concerns regarding vaccination and will provide an urgently needed resource to inform decision-making of these patients and their clinicians.

3.
Bioorg Med Chem Lett ; 29(16): 2224-2228, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31248774

ABSTRACT

This letter describes progress towards an M4 PAM preclinical candidate inspired by an unexpected aldehyde oxidase (AO) metabolite of a novel, CNS penetrant thieno[2,3-c]pyridine core to an equipotent, non-CNS penetrant thieno[2,3-c]pyrdin-7(6H)-one core. Medicinal chemistry design efforts yielded two novel tricyclic cores that enhanced M4 PAM potency, regained CNS penetration, displayed favorable DMPK properties and afforded robust in vivo efficacy in reversing amphetamine-induced hyperlocomotion in rats.


Subject(s)
Aldehyde Oxidase/metabolism , Myotonia Congenita/metabolism , Receptor, Muscarinic M4/metabolism , Animals , Drug Discovery , Humans , Rats , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 29(14): 1714-1718, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31113706

ABSTRACT

This letter describes progress towards an M4 PAM preclinical candidate that resulted in the discovery of VU6005806/AZN-00016130. While the thieno[2,3-c]pyridazine core has been a consistent feature of key M4 PAMs, no work had previously been reported with respect to alternate functionality at the C3 position of the pyridazine ring. Here, we detail new chemistry and analogs that explored this region, and quickly led to VU6005806/AZN-00016130, which was profiled as a putative candidate. While, the ß-amino carboxamide moiety engendered solubility limited absorption in higher species precluding advancement (or requiring extensive pharmaceutical sciences formulation), VU6005806/AZN-00016130 represents a new, high quality preclinical in vivo probe.


Subject(s)
Allosteric Regulation/immunology , Receptor, Muscarinic M4/immunology , Molecular Structure , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 29(3): 362-366, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30580918

ABSTRACT

This letter describes a focused exercise to explore the role of the ß-amino carboxamide moiety found in all of the first generation M4 PAMs and question if the NH2 group served solely to stabilize an intramolecular hydrogen bond (IMHB) and enforce planarity. To address this issue (and to potentially find a substitute for the ß-amino carboxamide that engendered P-gp and contributed to solubility liabilities), we removed the NH2, generating des-amino congeners and surveyed other functional groups in the ß-position. These modifications led to weak M4 PAMs with poor DMPK properties. Cyclization of the ß-amino carboxamide moiety by virtue of a pyrazole ring re-enforced the IMHB, led to potent (and patented) M4 PAMs, many as potent as the classical bicyclic ß-amino carboxamide analogs, but with significant CYP1A2 inhibition. Overall, this exercise indicated that the ß-amino carboxamide moiety most likely facilitates an IMHB, and is essential for M4 PAM activity within classical bicyclic M4 PAM scaffolds.


Subject(s)
Amides/pharmacology , Receptor, Muscarinic M4/antagonists & inhibitors , Allosteric Regulation/drug effects , Amides/chemical synthesis , Amides/chemistry , Dose-Response Relationship, Drug , Humans , Hydrogen Bonding , Ligands , Molecular Structure , Receptor, Muscarinic M4/metabolism , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 27(23): 5179-5184, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29089231

ABSTRACT

Herein we describe the continued optimization of M4 positive allosteric modulators (PAMs) within the 5-amino-thieno[2,3-c]pyridazine series of compounds. In this letter, we disclose our studies on tertiary amides derived from substituted azetidines. This series provided excellent CNS penetration, which had been challenging to consistently achieve in other amide series. Efforts to mitigate high clearance, aided by metabolic softspot analysis, were unsuccessful and precluded this series from further consideration as a preclinical candidate. In the course of this study, we found that potassium tetrafluoroborate salts could be engaged in a tosyl hydrazone reductive cross coupling reaction, a previously unreported transformation, which expands the synthetic utility of the methodology.


Subject(s)
Amides/chemistry , Azetidines/chemistry , Receptor, Muscarinic M4/metabolism , Allosteric Regulation , Amides/metabolism , Drug Evaluation, Preclinical , Humans , Protein Binding , Pyridazines/chemical synthesis , Pyridazines/chemistry , Pyridazines/metabolism , Receptor, Muscarinic M4/antagonists & inhibitors , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 27(13): 2990-2995, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28522253

ABSTRACT

This letter details the continued chemical optimization of a novel series of M4 positive allosteric modulators (PAMs) based on a 5-amino-thieno[2,3-c]pyridazine core by incorporating a 3-amino azetidine amide moiety. The analogs described within this work represent the most potent M4 PAMs reported for this series to date. The SAR to address potency, clearance, subtype selectivity, CNS exposure, and P-gp efflux are described. This work culminated in the discovery of VU6000918, which demonstrated robust efficacy in a rat amphetamine-induced hyperlocomotion reversal model at a minimum efficacious dose of 0.3mg/kg.


Subject(s)
Amides/pharmacology , Azetidines/pharmacology , Receptor, Muscarinic M4/antagonists & inhibitors , Allosteric Regulation/drug effects , Amides/chemical synthesis , Amides/chemistry , Animals , Azetidines/chemical synthesis , Azetidines/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Molecular Structure , Rats , Structure-Activity Relationship
9.
Bioorg Med Chem Lett ; 27(11): 2296-2301, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28442253

ABSTRACT

This letter describes the further chemical optimization of the 5-amino-thieno[2,3-c]pyridazine series (VU0467154/VU0467485) of M4 positive allosteric modulators (PAMs), developed via iterative parallel synthesis, culminating in the discovery of the non-human primate (NHP) in vivo tool compound, VU0476406 (8p). VU0476406 is an important in vivo tool compound to enable translation of pharmacodynamics from rodent to NHP, and while data related to a Parkinson's disease model has been reported with 8p, this is the first disclosure of the optimization and discovery of VU0476406, as well as detailed pharmacology and DMPK properties.


Subject(s)
Drug Discovery , Pyridazines/pharmacology , Thiophenes/pharmacology , Translational Research, Biomedical , Allosteric Regulation , Animals , Crystallography, X-Ray , Hydrogen Bonding , Pyridazines/chemistry , Rats , Structure-Activity Relationship , Thiophenes/chemistry
10.
ACS Med Chem Lett ; 8(2): 233-238, 2017 Feb 09.
Article in English | MEDLINE | ID: mdl-28197318

ABSTRACT

Herein, we report the structure-activity relationships within a series of potent, selective, and orally bioavailable muscarinic acetylcholine receptor 4 (M4) positive allosteric modulators (PAMs). Compound 6c (VU0467485) possesses robust in vitro M4 PAM potency across species and in vivo efficacy in preclinical models of schizophrenia. Coupled with an attractive DMPK profile and suitable predicted human PK, 6c (VU0467485) was evaluated as a preclinical development candidate.

11.
Bioorg Med Chem Lett ; 27(2): 171-175, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27939174

ABSTRACT

This letter describes the chemical optimization of a novel series of M4 positive allosteric modulators (PAMs) based on a 5-amino-thieno[2,3-c]pyridazine core, developed via iterative parallel synthesis, and culminating in the highly utilized rodent in vivo tool compound, VU0467154 (5). This is the first report of the optimization campaign (SAR and DMPK profiling) that led to the discovery of VU0467154, and details all of the challenges faced in allosteric modulator programs (steep SAR, species differences in PAM pharmacology and subtle structural changes affecting CNS penetration).


Subject(s)
Pyridazines/pharmacology , Receptor, Muscarinic M4/agonists , Thiophenes/pharmacology , Animals , Humans , Ligands , Nucleoside Transport Proteins/metabolism , Pyridazines/administration & dosage , Pyridazines/chemical synthesis , Pyridazines/pharmacokinetics , Rats, Sprague-Dawley , Structure-Activity Relationship , Thiophenes/administration & dosage , Thiophenes/chemical synthesis , Thiophenes/pharmacokinetics
12.
Bioorg Med Chem Lett ; 26(17): 4282-6, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27476142

ABSTRACT

This Letter describes the chemical optimization of a novel series of M4 PAMs based on a non-enolizable ketone core, identified from an MLPCN functional high-throughput screen. The HTS hit was potent, selective and CNS penetrant; however, the compound was highly cleared in vitro and in vivo. SAR provided analogs for which M4 PAM potency and CNS exposure were maintained; yet, clearance remained high. Metabolite identification studies demonstrated that this series was subject to rapid, and near quantitative, reductive metabolism to the corresponding secondary alcohol metabolite that was devoid of M4 PAM activity.


Subject(s)
Drug Discovery , Ketones/pharmacokinetics , Receptor, Muscarinic M1/agonists , Allosteric Regulation , Animals , Central Nervous System/metabolism , Humans , Ketones/chemical synthesis , Ketones/chemistry , Molecular Structure , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 26(13): 3029-3033, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27185330

ABSTRACT

This Letter describes the chemical optimization of a novel series of M4 positive allosteric modulators (PAMs) based on a 5,6-dimethyl-4-(piperidin-1-yl)thieno[2,3-d]pyrimidine core, identified from an MLPCN functional high-throughput screen. The HTS hit was potent and selective, but not CNS penetrant. Potency was maintained, while CNS penetration was improved (rat brain:plasma Kp=0.74), within the original core after several rounds of optimization; however, the thieno[2,3-d]pyrimidine core was subject to extensive oxidative metabolism. Ultimately, we identified a 6-fluoroquinazoline core replacement that afforded good M4 PAM potency, muscarinic receptor subtype selectivity and CNS penetration (rat brain:plasma Kp>10). Moreover, this campaign provided fundamentally distinct M4 PAM chemotypes, greatly expanding the available structural diversity for this exciting CNS target.


Subject(s)
Piperidines/pharmacology , Pyrimidines/pharmacology , Quinazolines/pharmacology , Receptor, Muscarinic M4/metabolism , Thiophenes/pharmacology , Allosteric Regulation , Animals , Brain/drug effects , Brain/metabolism , Humans , Microsomes, Liver/metabolism , Piperidines/chemical synthesis , Piperidines/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Quinazolines/chemical synthesis , Quinazolines/metabolism , Rats , Receptor, Muscarinic M4/agonists , Receptor, Muscarinic M4/antagonists & inhibitors , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/metabolism
14.
Neuropharmacology ; 102: 244-53, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26617071

ABSTRACT

Accumulating evidence indicates direct relationships between sleep abnormalities and the severity and prevalence of other symptom clusters in schizophrenia. Assessment of potential state-dependent alterations in sleep architecture and arousal relative to antipsychotic-like activity is critical for the development of novel antipsychotic drugs (APDs). Recently, we reported that VU0467154, a selective positive allosteric modulator (PAM) of the M4 muscarinic acetylcholine receptor (mAChR), exhibits robust APD-like and cognitive enhancing activity in rodents. However, the state-dependent effects of VU0467154 on sleep architecture and arousal have not been examined. Using polysomnography and quantitative electroencephalographic recordings from subcranial electrodes in rats, we evaluated the effects of VU0467154, in comparison with the atypical APD clozapine and the M1/M4-preferring mAChR agonist xanomeline. VU0467154 induced state-dependent alterations in sleep architecture and arousal including delayed Rapid Eye Movement (REM) sleep onset, increased cumulative duration of total and Non-Rapid Eye Movement (NREM) sleep, and increased arousal during waking periods. Clozapine decreased arousal during wake, increased cumulative NREM, and decreased REM sleep. In contrast, xanomeline increased time awake and arousal during wake, but reduced slow wave activity during NREM sleep. Additionally, in combination with the N-methyl-d-aspartate subtype of glutamate receptor (NMDAR) antagonist MK-801, modeling NMDAR hypofunction thought to underlie many symptoms in schizophrenia, both VU0467154 and clozapine attenuated MK-801-induced elevations in high frequency gamma power consistent with an APD-like mechanism of action. These findings suggest that selective M4 PAMs may represent a novel mechanism for treating multiple symptoms of schizophrenia, including disruptions in sleep architecture without a sedative profile.


Subject(s)
Pyridazines/pharmacology , Receptor, Muscarinic M4/agonists , Sleep/drug effects , Thiophenes/pharmacology , Allosteric Regulation/drug effects , Animals , Arousal/drug effects , Electroencephalography , Male , Polysomnography , Rats
15.
Proc Natl Acad Sci U S A ; 112(45): 14078-83, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26508634

ABSTRACT

Mutations that lead to Huntington's disease (HD) result in increased transmission at glutamatergic corticostriatal synapses at early presymptomatic stages that have been postulated to set the stage for pathological changes and symptoms that are observed at later ages. Based on this, pharmacological interventions that reverse excessive corticostriatal transmission may provide a novel approach for reducing early physiological changes and motor symptoms observed in HD. We report that activation of the M4 subtype of muscarinic acetylcholine receptor reduces transmission at corticostriatal synapses and that this effect is dramatically enhanced in presymptomatic YAC128 HD and BACHD relative to wild-type mice. Furthermore, chronic administration of a novel highly selective M4 positive allosteric modulator (PAM) beginning at presymptomatic ages improves motor and synaptic deficits in 5-mo-old YAC128 mice. These data raise the exciting possibility that selective M4 PAMs could provide a therapeutic strategy for the treatment of HD.


Subject(s)
Allosteric Regulation/physiology , Glutamic Acid/metabolism , Huntington Disease/drug therapy , Receptor, Muscarinic M4/physiology , Synaptic Transmission/physiology , Animals , Brain/metabolism , Fluorescence , Huntington Disease/physiopathology , Immunohistochemistry , Mice , Mice, Mutant Strains , Pyridazines/pharmacology , Pyridazines/therapeutic use , Rotarod Performance Test , Synaptic Transmission/drug effects , Thiophenes/pharmacology , Thiophenes/therapeutic use
16.
Cell ; 161(6): 1252-65, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26046436

ABSTRACT

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Subject(s)
Drug Discovery , Small Molecule Libraries , Animals , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Humans , National Institutes of Health (U.S.) , United States
17.
J Biomol Screen ; 20(7): 858-68, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25877150

ABSTRACT

Muscarinic acetylcholine receptors (mAChRs) have long been viewed as viable targets for novel therapeutic agents for the treatment of Alzheimer's disease and other disorders involving impaired cognitive function. In an attempt to identify orthosteric and allosteric modulators of the muscarinic acetylcholine receptor M(4) (M(4)), we developed a homogenous, multiparametric, 1536-well assay to measure M(4) receptor agonism, positive allosteric modulation (PAM), and antagonism in a single well. This assay yielded a Z' of 0.85 ± 0.05 in the agonist, 0.72 ± 0.07 in PAM, and 0.80 ± 0.06 in the antagonist mode. Parallel screening of the M(1) and M(5) subtypes using the same multiparametric assay format revealed chemotypes that demonstrate selectivity and/or promiscuity between assays and modalities. This identified 503 M(4) selective primary agonists, 1450 PAMs, and 2389 antagonist hits. Concentration-response analysis identified 25 selective agonists, 4 PAMs, and 41 antagonists. This demonstrates the advantages of this approach to rapidly identify selective receptor modulators while efficiently removing assay artifacts and undesirable compounds.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Muscarinic Agonists/pharmacology , Muscarinic Antagonists/pharmacology , Receptor, Muscarinic M4/metabolism , Allosteric Regulation , Animals , Cell Line , Drug Discovery/methods , Gene Expression , Humans , Muscarinic Agonists/chemistry , Muscarinic Antagonists/chemistry , Receptor, Muscarinic M4/genetics , Small Molecule Libraries
18.
Bioorg Med Chem Lett ; 25(3): 690-4, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25542588

ABSTRACT

This Letter describes the continued optimization of the MLPCN probe ML375, a highly selective M5 negative allosteric modulator (NAM), through a combination of matrix libraries and iterative parallel synthesis. True to certain allosteric ligands, SAR was shallow, and the matrix library approach highlighted the challenges with M5 NAM SAR within in this chemotype. Once again, enantiospecific activity was noted, and potency at rat and human M5 were improved over ML375, along with slight enhancement in physiochemical properties, certain in vitro DMPK parameters and CNS distribution. Attempts to further enhance pharmacokinetics with deuterium incorporation afforded mixed results, but pretreatment with a pan-P450 inhibitor (1-aminobenzotriazole; ABT) provided increased plasma exposure.


Subject(s)
Imidazoles/chemistry , Indoles/chemistry , Receptor, Muscarinic M5/chemistry , Allosteric Regulation , Animals , Brain/metabolism , Half-Life , Humans , Imidazoles/metabolism , Imidazoles/pharmacokinetics , Indoles/metabolism , Indoles/pharmacokinetics , Microsomes, Liver/metabolism , Protein Binding , Rats , Receptor, Muscarinic M5/genetics , Receptor, Muscarinic M5/metabolism , Structure-Activity Relationship
19.
ACS Chem Neurosci ; 5(12): 1221-37, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25225882

ABSTRACT

Metabotropic glutamate receptor 7 (mGlu7) is a member of the group III mGlu receptors (mGlus), encompassed by mGlu4, mGlu6, mGlu7, and mGlu8. mGlu7 is highly expressed in the presynaptic active zones of both excitatory and inhibitory synapses, and activation of the receptor regulates the release of both glutamate and GABA. mGlu7 is thought to be a relevant therapeutic target for a number of neurological and psychiatric disorders, and polymorphisms in the GRM7 gene have been linked to autism, depression, ADHD, and schizophrenia. Here we report two new pan-group III mGlu positive allosteric modulators, VU0155094 and VU0422288, which show differential activity at the various group III mGlus. Additionally, both compounds show probe dependence when assessed in the presence of distinct orthosteric agonists. By pairing studies of these nonselective compounds with a synapse in the hippocampus that expresses only mGlu7, we have validated activity of these compounds in a native tissue setting. These studies provide proof-of-concept evidence that mGlu7 activity can be modulated by positive allosteric modulation, paving the way for future therapeutics development.


Subject(s)
Excitatory Amino Acid Agents/chemistry , Excitatory Amino Acid Agents/pharmacology , Receptors, Metabotropic Glutamate/metabolism , Acetanilides/chemistry , Acetanilides/pharmacology , Animals , Benzoates/pharmacology , CHO Cells , Calcium/metabolism , Cricetulus , Dose-Response Relationship, Drug , Excitatory Postsynaptic Potentials/drug effects , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Glutamic Acid/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , HEK293 Cells , Hippocampus/drug effects , Hippocampus/metabolism , Humans , In Vitro Techniques , Male , Mice, Inbred C57BL , Picolinic Acids/chemistry , Picolinic Acids/pharmacology , Propionates/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Rats , Receptors, Metabotropic Glutamate/genetics , Structure-Activity Relationship , Thallium/metabolism , Transfection
20.
Bioorg Med Chem Lett ; 24(19): 4708-4713, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25176330

ABSTRACT

Herein we report the discovery and SAR of an indole-based protease activated receptor-4 (PAR-4) antagonist scaffold derived from a similarity search of the Vanderbilt HTS collection, leading to MLPCN probe ML354 (VU0099704). Using a novel PAC-1 fluorescent αIIbß3 activation assay this probe molecule antagonist was found to have an IC50 of 140nM for PAR-4 with 71-fold selectivity versus PAR-1 (PAR-1IC50=10µM).


Subject(s)
Apoptosis Regulatory Proteins/antagonists & inhibitors , Drug Discovery , Indoles/pharmacology , Apoptosis Regulatory Proteins/metabolism , Dose-Response Relationship, Drug , Humans , Indoles/chemical synthesis , Indoles/chemistry , Molecular Structure , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...